Mechanism of inhibition of HIV-1 reverse transcriptase by 4'-Ethynyl-2-fluoro-2'-deoxyadenosine triphosphate, a translocation-defective reverse transcriptase inhibitor.

نویسندگان

  • Eleftherios Michailidis
  • Bruno Marchand
  • Eiichi N Kodama
  • Kamlendra Singh
  • Masao Matsuoka
  • Karen A Kirby
  • Emily M Ryan
  • Ali M Sawani
  • Eva Nagy
  • Noriyuki Ashida
  • Hiroaki Mitsuya
  • Michael A Parniak
  • Stefan G Sarafianos
چکیده

Nucleoside reverse transcriptase inhibitors (NRTIs) are employed in first line therapies for the treatment of human immunodeficiency virus (HIV) infection. They generally lack a 3'-hydroxyl group, and thus when incorporated into the nascent DNA they prevent further elongation. In this report we show that 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), a nucleoside analog that retains a 3'-hydroxyl moiety, inhibited HIV-1 replication in activated peripheral blood mononuclear cells with an EC(50) of 0.05 nm, a potency several orders of magnitude better than any of the current clinically used NRTIs. This exceptional antiviral activity stems in part from a mechanism of action that is different from approved NRTIs. Reverse transcriptase (RT) can use EFdA-5'-triphosphate (EFdA-TP) as a substrate more efficiently than the natural substrate, dATP. Importantly, despite the presence of a 3'-hydroxyl, the incorporated EFdA monophosphate (EFdA-MP) acted mainly as a de facto terminator of further RT-catalyzed DNA synthesis because of the difficulty of RT translocation on the nucleic acid primer possessing 3'-terminal EFdA-MP. EFdA-TP is thus a translocation-defective RT inhibitor (TDRTI). This diminished translocation kept the primer 3'-terminal EFdA-MP ideally located to undergo phosphorolytic excision. However, net phosphorolysis was not substantially increased, because of the apparently facile reincorporation of the newly excised EFdA-TP. Our molecular modeling studies suggest that the 4'-ethynyl fits into a hydrophobic pocket defined by RT residues Ala-114, Tyr-115, Phe-160, and Met-184 and the aliphatic chain of Asp-185. These interactions, which contribute to both enhanced RT utilization of EFdA-TP and difficulty in the translocation of 3'-terminal EFdA-MP primers, underlie the mechanism of action of this potent antiviral nucleoside.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural basis of HIV inhibition by translocation-defective RT inhibitor 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA).

4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is the most potent nucleoside analog inhibitor of HIV reverse transcriptase (RT). It retains a 3'-OH yet acts as a chain-terminating agent by diminishing translocation from the pretranslocation nucleotide-binding site (N site) to the posttranslocation primer-binding site (P site). Also, facile misincorporation of EFdA-monophosphate (MP) results in di...

متن کامل

Delayed emergence of HIV-1 variants resistant to 4'-ethynyl-2-fluoro-2'-deoxyadenosine: comparative sequential passage study with lamivudine, tenofovir, emtricitabine and BMS-986001.

BACKGROUND 4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) contains an ethynyl moiety and the 3'-hydroxyl and exerts highly potent activity against various HIV type-1 (HIV-1) strains including multi-drug-resistant variants. METHODS Comparative selection passages against EFdA, lamivudine (3TC), tenofovir disoproxil fumarate (TDF), emtricitabine (FTC) or BMS-986001 (Ed4T) were conducted using a mi...

متن کامل

Inhibition of multi-drug resistant HIV-1 reverse transcriptase by nucleoside β-triphosphates.

Despite the success of potent reverse transcriptase (RT) inhibitors against human immunodeficiency virus type 1 (HIV-1) in combination regimens, the development of drug resistant RTs constitutes a major hurdle for the long-term efficacy of current antiretroviral therapy. Nucleoside β-triphosphate analogs of adenosine and nucleoside reverse transcriptase inhibitors (NRTIs) (3'-azido-2',3'-dideox...

متن کامل

Balancing antiviral potency and host toxicity: identifying a nucleotide inhibitor with an optimal kinetic phenotype for HIV-1 reverse transcriptase.

Two novel thymidine analogs, 3'-fluoro-3'-deoxythymidine (FLT) and 2',3'-didehydro-3'-deoxy-4'-ethynylthymidine (Ed4T), have been investigated as nucleoside reverse transcriptase inhibitors (NRTIs) for treatment of HIV infection. Ed4T seems very promising in phase II clinical trials, whereas toxicity halted FLT development during this phase. To understand these different molecular mechanisms of...

متن کامل

DNA chain termination activity and inhibition of human immunodeficiency virus reverse transcriptase by carbocyclic 2',3'-didehydro-2',3'-dideoxyguanosine triphosphate.

Carbocyclic 2',3'-didehydro-2',3'-dideoxyguanosine (carbovir, NSC 614846) is an anti-retroviral agent that may be useful in the treatment of AIDS. We have examined the ability of (-)-enantiomeric carbovir triphosphate to inhibit human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (EC 2.7.7.49). A comparison of inhibition kinetics was made with 3'-azido-2',3'-dideoxythymidine triph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 284 51  شماره 

صفحات  -

تاریخ انتشار 2009